Hadoop - Bigdata
                                                                                   
Prerequisites
·        
There are no pre-requisites
for this course.
·        
Basic knowledge of Core Java
and SQL is advantageous. 
Course Content
1.     
Java
·        
Overview of Java
·        
Classes and Objects
·        
Garbage Collection and Modifiers
·        
Inheritance, Aggregation, Polymorphism
·        
Command line argument
·        
Abstract class and Interfaces
·        
String Handling
·        
Exception Handling, Multithreading
·        
Serialization and Advanced Topics
·        
Collection Framework, GUI, JDBC
2.     
Linux
·        
Unix History & Over View
·        
Command line file-system browsing
·        
Bash/CORN Shell
·        
Users Groups and Permissions
·        
VI Editor
·        
Introduction to Process
·        
Basic Networking
·        
Shell Scripting live scenarios
3.     
SQL
·        
Introduction to SQL, Data Definition Language (DDL)
·        
Data Manipulation Language(DML)
·        
Operator and Sub Query
·        
Various Clauses, SQL Key Words
·        
Joins, Stored Procedures, Constraints, Triggers
·        
Cursors /Loops / IF Else / Try Catch, Index
·        
Data Manipulation Language (Advanced)
·        
Constraints, Triggers,
·        
Views, Index Advanced
Hadoop - Bigdata
1.     
Introduction to Bigdata
·        
Introduction and relevance
·        
Uses of Big Data analytics in various industries like Telecom, E-
commerce, Finance and Insurance etc.
·        
Problems with Traditional Large-Scale Systems
2.     
Hadoop (Big Data) Ecosystem
·        
 Motivation for Hadoop
·        
Different types of projects by Apache
·        
Role of projects in the Hadoop Ecosystem
·        
Key technology foundations required for Big Data
·        
Limitations and Solutions of existing Data Analytics Architecture
·        
Comparison of traditional data management systems with Big Data
management systems
·        
Evaluate key framework requirements for Big Data analytics
·        
Hadoop Ecosystem & Hadoop 2.x core components
·        
Explain the relevance of real-time data
·        
Explain how to use big and real-time data as a Business
planning tool
3.     
Building Blocks
·        
Quick tour of Java (As Hadoop is Written in Java , so it will help
us to understand it better)
·        
Quick tour of Linux commands ( Basic Commands to traverse the Linux
OS)
·        
Quick Tour of RDBMS Concepts (to use HIVE and Impala)
·        
Quick hands on experience of SQL.
·        
Introduction to Cloudera VM and usage instructions
4.     
Hadoop Cluster Architecture – Configuration Files
·        
Hadoop Master-Slave Architecture
·        
The Hadoop Distributed File System - data storage
·        
Explain different types of cluster setups (Fully distributed/Pseudo
etc.)
·        
Hadoop Cluster set up - Installation
·        
Hadoop 2.x Cluster Architecture
·        
A Typical enterprise cluster – Hadoop Cluster Modes
5.     
Hadoop Core Components – HDFS & Map Reduce (YARN)
6.     
HDFS Overview & Data storage in HDFS
·        
Get the data into Hadoop from local machine (Data Loading
Techniques) - vice versa
·        
MapReduce Overview (Traditional way Vs. MapReduce way)
·        
Concept of Mapper & Reducer
·        
Understanding MapReduce program skeleton
·        
Running MapReduce job in Command line/Eclipse
·        
Develop MapReduce Program in JAVA
·        
Develop MapReduce Program with the streaming API
·        
Test and debug a MapReduce program in the design time
·        
How Partitioners and Reducers Work Together
·        
Writing Customer Partitioners Data Input and Output
·        
Creating Custom Writable and Writable Comparable Implementations
7.     
 Data Integration Using Sqoop and
Flume
·        
Integrating Hadoop into an existing Enterprise 
·        
Loading Data from an RDBMS into HDFS by Using Sqoop 
·        
Managing Real-Time Data Using Flume 
·        
Accessing HDFS from Legacy Systems with FuseDFS and HttpFS 
·        
Introduction to Talend (community system)